Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Cell Rep ; 43(4): 114029, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573852

ABSTRACT

The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.


Subject(s)
Microbiota , Phenotype , T-Lymphocytes , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Male , Female , Mice, Inbred C57BL
2.
Blood ; 143(11): 1049-1054, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38052031

ABSTRACT

ABSTRACT: We show that red cell exchange (RCE) treats hyperleukocytosis in acute leukemia. RCE provided similar leukoreduction to standard therapeutic leukoreduction and could be superior in patients with severe anemia or monocytic leukemias or when requiring rapid treatment.


Subject(s)
Leukemia, Monocytic, Acute , Leukemia, Myeloid, Acute , Leukostasis , Adult , Humans , Leukostasis/therapy , Leukemia, Myeloid, Acute/therapy , Leukemia, Monocytic, Acute/therapy , Acute Disease , Leukapheresis , Leukocytosis/therapy
3.
Article in English | MEDLINE | ID: mdl-38157943

ABSTRACT

BACKGROUND: The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES: This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS: RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS: This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS: This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.

4.
Int Immunopharmacol ; 125(Pt A): 111145, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935092

ABSTRACT

The enhancement of T cell and NK cell function is an immunotherapeutic strategy for combating cancer. Antibodies that block inhibitory receptors, such as PD-1 and CTLA4, augment T cell function and have been successful in curing patients with some types of cancer. As an alternative approach to targeting specific inhibitory receptors by antibodies, small molecule drugs that inhibit negative regulators of T cell activation have been sought. One potential pharmacological target is diacylglycerol (DAG) kinase (DGK)ζ, which is an enzyme that acts as a negative regulator of DAG by phosphorylating DAG and converting it into phosphatidic acid. DAG-mediated signaling is critical for T cell activation through its T cell receptor and NK cell activation downstream of a variety of activating receptors. Thus, DGKζ-deficient T cells and NK cells display increased function upon activating receptor engagement. Moreover, treatment with the DGKζ-selective inhibitor ASP1570 augments T cell function. In this study, we sought to test whether the acute inhibition of DGKζ by ASP1570 augments NK cell function. We find that ASP1570 enhances DAG-mediated signaling in immunoreceptor-stimulated NK cells. Accordingly, ASP1570 treatment enhanced IFNγ production and degranulation of immunoreceptor-activated NK cells in vitro and NK cell-mediated tumor clearance in vivo. Thus, ASP1570 enhances both T and NK cell function, which could possibly induce more durable anti-tumor responses for immunotherapy.


Subject(s)
Diacylglycerol Kinase , Neoplasms , Humans , Diacylglycerol Kinase/metabolism , T-Lymphocytes , Signal Transduction , Killer Cells, Natural/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
5.
Cell Immunol ; 393-394: 104780, 2023.
Article in English | MEDLINE | ID: mdl-37918056

ABSTRACT

Allergic airway diseases are caused by inappropriate immune responses directed against inhaled environmental antigens. We previously reported that the inhibition of diacylglycerol (DAG) kinaseζ (DGKζ),an enzyme that terminates DAG-mediated signaling,protects against T cell-mediated allergic airway inflammation by blocking Th2 cell differentiation.In this study, we tested whether DGKζ deficiency also affects allergic airway disease mediated by type 2 innate lymphoid cells (ILC2)s. DGKζ-deficient mice displayed diminished ILC2 function and reduced papain-induced airway inflammation compared to wildtype mice. Unexpectedly, however, mice with hematopoietic cell-specific deletion ofDGKζ displayed intact airway inflammation upon papain challenge. Rather, bone marrow chimera studies revealed thatDGKζ deficiency in the non-hematopoietic compartment was responsible for the reduction in papain-induced airway inflammation. These data suggest that DGK might represent a novel therapeutic target not only for T cell-dependent but also ILC2-dependent allergic airway inflammation by affecting non-hematopoietic cells.


Subject(s)
Hypersensitivity , Immunity, Innate , Animals , Mice , Papain , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Lymphocytes , Inflammation
7.
Eur J Immunol ; 53(10): e2350390, 2023 10.
Article in English | MEDLINE | ID: mdl-37525585

ABSTRACT

Therapeutic strategies that enhance regulatory T (Treg) cell proliferation or suppressive function hold promise for the treatment of autoimmune and inflammatory diseases. We previously reported that the topical application of the vitamin D3 analog MC903 systemically expands Treg cells by stimulating the production of thymic stromal lymphopoietin (TSLP) from the skin. Using mice lacking TSLP receptor expression by dendritic cells (DCs), we hereby show that TSLP receptor signaling in DCs is required for this Treg expansion in vivo. Topical MC903 treatment of ear skin selectively increased the number of migratory DCs in skin-draining lymph nodes (LNs) and upregulated their expression of co-stimulatory molecules. Accordingly, DCs isolated from skin-draining LNs but not mesenteric LNs or spleen of MC903-treated mice showed an enhanced ability to promote Treg proliferation, which was driven by co-stimulatory signals through CD80/CD86 and OX40 ligand. Among the DC subsets in the skin-draining LNs of MC903-treated mice, migratory XCR1- CD11b+ type 2 and XCR1- CD11b- double negative conventional DCs promoted Treg expansion. Together, these data demonstrate that vitamin D3 stimulation of skin induces TSLP expression, which stimulates skin migratory DCs to expand Treg cells. Thus, topical MC903 treatment could represent a convenient strategy to treat inflammatory disorders by engaging this pathway.


Subject(s)
T-Lymphocytes, Regulatory , Thymic Stromal Lymphopoietin , Animals , Mice , Cholecalciferol/metabolism , Cytokines/metabolism , Dendritic Cells
8.
Mol Ther ; 31(9): 2702-2714, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37533256

ABSTRACT

Lyme disease is the most common vector-borne infectious disease in the United States, in part because a vaccine against it is not currently available for humans. We propose utilizing the lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) platform to generate a Lyme disease vaccine like the successful clinical vaccines against SARS-CoV-2. Of the antigens expressed by Borrelia burgdorferi, the causative agent of Lyme disease, outer surface protein A (OspA) is the most promising candidate for vaccine development. We have designed and synthesized an OspA-encoding mRNA-LNP vaccine and compared its immunogenicity and protective efficacy to an alum-adjuvanted OspA protein subunit vaccine. OspA mRNA-LNP induced superior humoral and cell-mediated immune responses in mice after a single immunization. These potent immune responses resulted in protection against bacterial infection. Our study demonstrates that highly efficient mRNA vaccines can be developed against bacterial targets.


Subject(s)
COVID-19 , Lyme Disease , Humans , Animals , Mice , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Lyme Disease/prevention & control , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics
9.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066207

ABSTRACT

The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development 1-3 . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion 4 , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression 5 were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.

10.
Sci Transl Med ; 15(686): eabl4414, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36888695

ABSTRACT

Natural killer (NK) cells are cytotoxic lymphocytes that accumulate within the tumor microenvironment and are generally considered to be antitumorigenic. Using single-cell RNA sequencing and functional analysis of multiple triple-negative breast cancer (TNBC) and basal tumor samples, we observed a unique subcluster of Socs3highCD11b-CD27- immature NK cells that were present only in TNBC samples. These tumor-infiltrating NK cells expressed a reduced cytotoxic granzyme signature and, in mice, were responsible for activating cancer stem cells through Wnt signaling. NK cell-mediated activation of these cancer stem cells subsequently enhanced tumor progression in mice, whereas depletion of NK cells or Wnt ligand secretion from NK cells by LGK-974 decreased tumor progression. In addition, NK cell depletion or inhibition of their function improved anti-programmed cell death ligand 1 (PD-L1) antibody or chemotherapy response in mice with TNBC. Furthermore, tumor samples from patients with TNBC and non-TNBC revealed that increased numbers of CD56bright NK cells were present in TNBC tumors and were correlated to poor overall survival in patients with TNBC. Together, our findings identify a population of protumorigenic NK cells that may be exploited for both diagnostic and therapeutic strategies to improve outcomes for patients with TNBC.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Killer Cells, Natural , B7-H1 Antigen/metabolism , Tumor Microenvironment
11.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233170

ABSTRACT

Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, generation of inositol triphosphate (IP3) and diacylglycerol (DAG). Diacylglycerol kinase (DGK) converts DAG into phosphatidic acid (PA) and terminates DAG signaling while promoting PA-mediated signaling and function. Herein, we hypothesized that PA is a pro-mitogenic second messenger in ASM, and DGK inhibition reduces the conversion of DAG into PA resulting in inhibition of ASM cell proliferation. We assessed the effect of pharmacological inhibition of DGK on pro-mitogenic signaling and proliferation in primary human ASM cells. Pretreatment with DGK inhibitor I (DGKI) significantly inhibited platelet-derived growth factor-stimulated ASM cell proliferation. Anti-mitogenic effect of DGKI was associated with decreased mTOR signaling and expression of cyclin D1. Exogenous PA promoted pro-mitogenic signaling and rescued DGKI-induced attenuation of ASM cell proliferation. Finally, house dust mite (HDM) challenge in wild type mice promoted airway remodeling features, which were attenuated in DGKζ-/- mice. We propose that DGK serves as a potential drug target for mitigating airway remodeling in asthma.


Subject(s)
Airway Remodeling , Asthma , Animals , Asthma/metabolism , Cell Proliferation , Cyclin D1/metabolism , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Diglycerides/metabolism , Humans , Inositol/pharmacology , Mice , Mitogens/pharmacology , Myocytes, Smooth Muscle/metabolism , Phosphatidic Acids/metabolism , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Protein-Tyrosine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , TOR Serine-Threonine Kinases/metabolism , Type C Phospholipases/metabolism
12.
J Cell Physiol ; 237(1): 603-616, 2022 01.
Article in English | MEDLINE | ID: mdl-34278583

ABSTRACT

Diacylglycerol kinase (DGK), a lipid kinase, catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid, thereby terminating DAG-mediated signaling by Gq-coupled receptors that regulate contraction of airway smooth muscle (ASM). A previous study from our laboratory demonstrated that DGK inhibition or genetic ablation leads to reduced ASM contraction and provides protection for allergen-induced airway hyperresponsiveness. However, the mechanism by which DGK regulates contractile signaling in ASM is not well established. Herein, we investigated the role of prorelaxant cAMP-protein kinase A (PKA) signaling in DGK-mediated regulation of ASM contraction. Pretreatment of human ASM cells with DGK inhibitor I activated PKA as demonstrated by the phosphorylation of PKA substrates, VASP, Hsp20, and CREB, which was abrogated when PKA was inhibited pharmacologically or molecularly using overexpression of the PKA inhibitor peptide, PKI. Furthermore, inhibition of DGK resulted in induction of cyclooxygenase (COX) and generation of prostaglandin E2 (PGE2 ) with concomitant activation of Gs-cAMP-PKA signaling in ASM cells in an autocrine/paracrine fashion. Inhibition of protein kinase C (PKC) or extracellular-signal-regulated kinase (ERK) attenuated DGK-mediated production of PGE2 and activation of cAMP-PKA signaling in human ASM cells, suggesting that inhibition of DGK activates the COX-PGE2 pathway in a PKC-ERK-dependent manner. Finally, DGK inhibition-mediated attenuation of contractile agonist-induced phosphorylation of myosin light chain 20 (MLC-20), a marker of ASM contraction, involves COX-mediated cAMP production and PKA activation in ASM cells. Collectively these findings establish a novel mechanism by which DGK regulates ASM contraction and further advances DGK as a potential therapeutic target to provide effective bronchoprotection in asthma.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Diacylglycerol Kinase , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Diacylglycerol Kinase/genetics , Dinoprostone/pharmacology , Humans , Muscle Contraction , Protein Kinase C
13.
Front Immunol ; 13: 1032113, 2022.
Article in English | MEDLINE | ID: mdl-36846018

ABSTRACT

Introduction: Activation of T cell receptor (TCR) signaling is critical for clonal expansion of CD8+ T cells. However, the effects of augmenting TCR signaling during chronic antigen exposure is less understood. Here, we investigated the role of diacylglycerol (DAG)-mediated signaling downstream of the TCR during chronic lymphocytic choriomeningitis virus clone 13 (LCMV CL13) infection by blocking DAG kinase zeta (DGKζ), a negative regulator of DAG. Methods: We examined the activation, survival, expansion, and phenotype of virus-specific T cell in the acute and chronic phases of LCMV CL13-infected in mice after DGKζ blockade or selective activation of ERK. Results: Upon LCMV CL13 infection, DGKζ deficiency promoted early short-lived effector cell (SLEC) differentiation of LCMV-specific CD8+ T cells, but this was followed by abrupt cell death. Short-term inhibition of DGKζ with ASP1570, a DGKζ-selective pharmacological inhibitor, augmented CD8+ T cell activation without causing cell death, which reduced virus titers both in the acute and chronic phases of LCMV CL13 infection. Unexpectedly, the selective enhancement of ERK, one key signaling pathway downstream of DAG, lowered viral titers and promoted expansion, survival, and a memory phenotype of LCMV-specific CD8+ T cells in the acute phase with fewer exhausted T cells in the chronic phase. The difference seen between DGKζ deficiency and selective ERK enhancement could be potentially explained by the activation of the AKT/mTOR pathway by DGKζ deficiency, since the mTOR inhibitor rapamycin rescued the abrupt cell death seen in virus-specific DGKζ KO CD8+ T cells. Discussion: Thus, while ERK is downstream of DAG signaling, the two pathways lead to distinct outcomes in the context of chronic CD8+ T cell activation, whereby DAG promotes SLEC differentiation and ERK promotes a memory phenotype.


Subject(s)
Diglycerides , Lymphocytic Choriomeningitis , MAP Kinase Signaling System , Animals , Mice , CD8-Positive T-Lymphocytes , Diglycerides/metabolism , Lymphocytic choriomeningitis virus , Receptors, Antigen, T-Cell , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
Blood Adv ; 5(17): 3445-3456, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34438448

ABSTRACT

Idiopathic multicentric Castleman disease (iMCD) is a poorly understood hematologic disorder involving cytokine-induced polyclonal lymphoproliferation, systemic inflammation, and potentially fatal multiorgan failure. Although the etiology of iMCD is unknown, interleukin-6 (IL-6) is an established disease driver in approximately one-third of patients. Anti-IL-6 therapy, siltuximab, is the only US Food and Drug Administration-approved treatment. Few options exist for siltuximab nonresponders, and no validated tests are available to predict likelihood of response. We procured and analyzed the largest-to-date cohort of iMCD samples, which enabled classification of iMCD into disease categories, discovery of siltuximab response biomarkers, and identification of therapeutic targets for siltuximab nonresponders. Proteomic quantification of 1178 analytes was performed on serum of 88 iMCD patients, 60 patients with clinico-pathologically overlapping diseases (human herpesvirus-8-associated MCD, N = 20; Hodgkin lymphoma, N = 20; rheumatoid arthritis, N = 20), and 42 healthy controls. Unsupervised clustering revealed iMCD patients have heterogeneous serum proteomes that did not cluster with clinico-pathologically overlapping diseases. Clustering of iMCD patients identified a novel subgroup with superior response to siltuximab, which was validated using a 7-analyte panel (apolipoprotein E, amphiregulin, serum amyloid P-component, inactivated complement C3b, immunoglobulin E, IL-6, erythropoietin) in an independent cohort. Enrichment analyses and immunohistochemistry identified Janus kinase (JAK)/signal transducer and activator of transcription 3 signaling as a candidate therapeutic target that could potentially be targeted with JAK inhibitors in siltuximab nonresponders. Our discoveries demonstrate the potential for accelerating discoveries for rare diseases through multistakeholder collaboration.


Subject(s)
Castleman Disease , Herpesvirus 8, Human , Castleman Disease/drug therapy , Humans , Interleukin-6 , Proteomics , Signal Transduction , United States
15.
Science ; 373(6554)2021 07 30.
Article in English | MEDLINE | ID: mdl-34326208

ABSTRACT

Emerging studies indicate that the immune system can regulate systemic metabolism. Here, we show that thymic stromal lymphopoietin (TSLP) stimulates T cells to induce selective white adipose loss, which protects against obesity, improves glucose metabolism, and mitigates nonalcoholic steatohepatitis. Unexpectedly, adipose loss was not caused by alterations in food intake, absorption, or energy expenditure. Rather, it was induced by the excessive loss of lipids through the skin as sebum. TSLP and T cells regulated sebum release and sebum-associated antimicrobial peptide expression in the steady state. In human skin, TSLP expression correlated directly with sebum-associated gene expression. Thus, we establish a paradigm in which adipose loss can be achieved by means of sebum hypersecretion and uncover a role for adaptive immunity in skin barrier function through sebum secretion.


Subject(s)
Adipose Tissue, White/anatomy & histology , Cytokines/metabolism , Sebum/metabolism , Skin/metabolism , Adaptive Immunity , Animals , Cytokines/genetics , Diet , Glucose/metabolism , Homeostasis , Humans , Immunoglobulins/metabolism , Lipid Metabolism , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/prevention & control , Pore Forming Cytotoxic Proteins/metabolism , Receptors, Cytokine/metabolism , Sebaceous Glands/metabolism , Signal Transduction , Skin/immunology , T-Lymphocytes/physiology , Weight Loss , Thymic Stromal Lymphopoietin
16.
Am J Respir Cell Mol Biol ; 65(6): 658-671, 2021 12.
Article in English | MEDLINE | ID: mdl-34293268

ABSTRACT

Exaggerated airway smooth muscle (ASM) contraction regulated by the Gq family of G protein-coupled receptors causes airway hyperresponsiveness in asthma. Activation of Gq-coupled G protein-coupled receptors leads to phospholipase C (PLC)-mediated generation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG signaling is terminated by the action of DAG kinase (DGK) that converts DAG into phosphatidic acid (PA). Our previous study demonstrated that DGKζ and α isoform knockout mice are protected from the development of allergen-induced airway hyperresponsiveness. Here we aimed to determine the mechanism by which DGK regulates ASM contraction. Activity of DGK isoforms was inhibited in human ASM cells by siRNA-mediated knockdown of DGKα and ζ, whereas pharmacological inhibition was achieved by pan DGK inhibitor I (R59022). Effects of DGK inhibition on contractile agonist-induced activation of PLC and myosin light chain (MLC) kinase, elevation of IP3, and calcium levels were assessed. Furthermore, we used precision-cut human lung slices and assessed the role of DGK in agonist-induced bronchoconstriction. DGK inhibitor I attenuated histamine- and methacholine-induced bronchoconstriction. DGKα and ζ knockdown or pretreatment with DGK inhibitor I resulted in attenuated agonist-induced phosphorylation of MLC and MLC phosphatase in ASM cells. Furthermore, DGK inhibition decreased Gq agonist-induced calcium elevation and generation of IP3 and increased histamine-induced production of PA. Finally, DGK inhibition or treatment with DAG analog resulted in attenuation of activation of PLC in human ASM cells. Our findings suggest that DGK inhibition perturbed the DAG:PA ratio, resulting in inhibition of Gq-PLC activation in a negative feedback manner, resulting in protection against ASM contraction.


Subject(s)
Bronchoconstriction/drug effects , Diacylglycerol Kinase/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Muscle Contraction/drug effects , Muscle, Smooth/enzymology , Pyrimidinones/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , Bronchoconstriction/genetics , Cells, Cultured , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Knockdown Techniques , Humans , Muscle Contraction/genetics , Signal Transduction/genetics
17.
J Control Release ; 331: 164-175, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33450320

ABSTRACT

The development of nanomaterials to induce antigen-specific immune tolerance has shown promise for treating autoimmune diseases. While PEGylation has been widely used to reduce host immune responses to nanomaterials, its tolerogenic potential has not been reported. Here, we report for the first time that a subcutaneous injection of PEGylated poly(lactide-co-glycolide) (PLGA) nanoparticles containing auto-antigen peptide MOG35-55 without any tolerogenic drugs is sufficient to dramatically ameliorate symptoms after disease onset in an antigen-specific manner in a mouse model of multiple sclerosis. Neither free MOG35-55 nor particles without PEG exhibit this efficacy. Interestingly, mechanistic studies indicate that PEGylation of nanoparticles does not reduce dendritic cell activation through direct nanoparticle-cell interactions. Instead, PEGylated nanoparticles induce lower complement activation, neutrophil recruitment, and co-stimulatory molecule expression on dendritic cells around the injection sitecompared to non-PEGylated PLGA nanoparticles, creating a more tolerogenic microenvironment in vivo. We further demonstrate that the locally recruited dendritic cells traffic to lymphoid organs to induce T cell tolerance. These results highlight the critical role of surface properties of nanomaterials in inducing immune tolerance via subcutaneous administration.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Animals , Antigens , Dendritic Cells , Immune Tolerance , Mice
18.
Sci Immunol ; 5(53)2020 11 13.
Article in English | MEDLINE | ID: mdl-33188058

ABSTRACT

Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.


Subject(s)
Dendritic Cells/immunology , Interleukin-33/metabolism , Membrane Proteins/metabolism , Strongylida Infections/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Membrane/metabolism , Chronic Disease , Dendritic Cells/metabolism , Disease Models, Animal , Female , Humans , Immune Tolerance , Immunity, Innate , Immunity, Mucosal , Interleukin-33/analysis , Interleukin-33/genetics , Male , Mice , Mice, Transgenic , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Nasal Polyps/immunology , Nasal Polyps/pathology , Nematospiroides dubius/immunology , Nippostrongylus/immunology , Pore Forming Cytotoxic Proteins , Rhinitis/immunology , Rhinitis/pathology , Sinusitis/immunology , Sinusitis/pathology , Strongylida Infections/parasitology , T-Lymphocytes, Regulatory/metabolism
19.
Curr Opin Pharmacol ; 51: 50-58, 2020 04.
Article in English | MEDLINE | ID: mdl-32836013

ABSTRACT

Asthma is an obstructive inflammatory airway disease. Airway obstruction is mediated by hyperresponsive airway smooth muscle cell contraction, which is induced and compounded by inflammation caused by T lymphocytes. One important signal transduction pathway that is involved in the activation of these cell types involves the generation of a lipid second messenger known as diacylglycerol (DAG). DAG levels are controlled in cells by a negative regulator known as DAG kinase (DGK). In this review, we discuss how the DAG signaling pathway attenuates the pathological function of immune cells and airway smooth muscle cells in allergic airway disease and asthma. Furthermore, we discuss how the enhancement of the DAG signaling pathway through the inhibition of DGK may represent a novel therapeutic strategy for these diseases.


Subject(s)
Diacylglycerol Kinase/metabolism , Hypersensitivity/enzymology , Lung Diseases/enzymology , Myocytes, Smooth Muscle/enzymology , T-Lymphocytes/enzymology , Animals , Anti-Asthmatic Agents/administration & dosage , Diacylglycerol Kinase/immunology , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Lung Diseases/drug therapy , Lung Diseases/immunology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
20.
Cell Rep ; 31(12): 107815, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579940

ABSTRACT

Durable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival. Here we show that CD28 transduces pro-survival signaling specifically in LLPCs through differential SLP76 expression. CD28 signaling in LLPCs increased glucose uptake, mitochondrial mass/respiration, and reactive oxygen species (ROS) production. Unexpectedly, CD28-mediated regulation of mitochondrial respiration, NF-κB activation, and survival was ROS dependent. IRF4, a target of NF-κB, was upregulated by CD28 activation in LLPCs and decreased IRF4 levels correlated with decreased glucose uptake, mitochondrial mass, ROS, and CD28-mediated survival. Altogether, these data demonstrate that CD28 signaling induces a ROS-dependent metabolic program required for LLPC survival.


Subject(s)
CD28 Antigens/metabolism , Plasma Cells/cytology , Plasma Cells/metabolism , Animals , Bone Marrow Cells/cytology , Cell Respiration , Cell Survival , Female , Glucose/metabolism , Humans , Interferon Regulatory Factors/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...